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Abstract. We present a new concept for a Penning trap, which is planar and allows for the implemen-
tation of novel confinement techniques. The trap provides confinement perpendicular to its plane by an
electric potential minimum while a superimposed magnetic field provides radial confinement. Both the
axial position and the depth of the potential minimum can be controlled by the applied voltages. The
device is scalable in the sense that an arbitrary number of planar traps can be embedded in one plane
thus representing a multitrap array which can be used for particle interaction studies. Switches between
different traps in the planar array allow for controlled interactions between the single stored particles.

PACS. 85.35.Gv Single electron devices – 07.20.Mc Cryogenics and low temperature equipment –
07.50.-eElectronic instruments and components – 07.90.+c Other topics in instruments

1 Introduction

Penning traps confine charged particles by a combination
of static electric and magnetic fields [1–3]. The electric
field provides a potential minimum in one direction, com-
monly called the z-direction. The defocusing force of this
field in the plane perpendicular to the z-axis is compen-
sated by a magnetic field directed along the z-axis. When
operated under ultra-high vacuum conditions virtually un-
limited times for confinement of charged particles such
as electrons and protons and their antiparticles as well
as singly or multiply charged ions have been achieved.
Penning traps have been successfully used in the determi-
nation of fundamental constants [4,5], high precision mass
spectrometry [6–9], or Zeeman spectroscopy [10–12].

In a similar way their counterpart, the Paul trap, which
uses only time varying electric fields to produce a time
averaged potential minimum, has been applied to preci-
sion spectroscopy such as hyperfine measurements [13],
lifetime determination of long lived metastable ionic en-
ergy levels [14–17], and the development of frequency stan-
dards [18]. More recently Paul traps have proven to be
potentially useful tools in the development of quantum
computation [19,20]. In this context planar Paul traps
have been developed which offer interesting possibilities in
the study of multipartite systems and entanglement [21].

In this article, we discuss the properties and possi-
ble applications of a planar Penning trap. We will first
describe the general idea of this device in comparison to
conventional Penning traps. A particular feature of planar
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Penning traps is the possibility of miniaturisation and the
formation of 2D trap arrays, which may be useful when
coupling of several single particles is the issue. Trap arrays
and the coupling mechanism will be discussed in more de-
tail in the third section of the paper.

2 Planar trap

A conventional 3D Penning trap consists of two electri-
cally connected endcap electrodes at a distance 2z0 and
one ring electrode of radius r0. When the surfaces of the
electrodes follow hyperboloids of revolution, the potential
in the space between the electrodes depends on the square
of the coordinates and therefore has a quadrupolar shape.
It has the expression:

Φ(x, y, z) =
U

2d2
0

(
x2 + y2 − 2z2

)
(1)

where U is the potential difference between ring and end-
cap electrodes and d0 a characteristic trap dimension. The
equation of motion of a charged particle in this poten-
tial can be solved analytically and is well-known to yield
three eigenfrequencies, namely the cyclotron, axial and
magnetron frequencies. When the electrode shape deviates
from the hyperbolic form, the dependence of the potential
on the coordinates will be different. As long as rotational
symmetry with respect to the z-axis is preserved, the po-
tential can easily be expanded in spherical harmonics and
the leading term remains the quadrupole part.

Converting the three-dimensional electrode array into
a two-dimensional one is achieved by removing the upper
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Fig. 1. Planar trap scheme. The electrodes (black) are embed-
ded in a plane made of an isolator.

endcap and embedding the ring and lower endcap in a
plane. The result is displayed in Figure 1. This is the sim-
plest 2D configuration possible. Further ring electrodes
may be added if necessary to enhance the properties of
the trap. This case will be discussed in Section 2.1.

Mechanically the electrodes of a planar trap can be im-
plemented by use of well-established thin film or thick film
technology on a ceramic substrate, e.g. using gold as elec-
trode material. Thick film technology has been in use since
decades, giving spatial resolution in the order of 20 µm,
whereas thin film technology achieves even sub-µm resolu-
tion. To avoid charge accumulation on the substrate and
the corresponding disturbing influences on the trapping
behavior, an additional surface layer of low conductivity
can be used. Thin layers of e.g. graphite or gold in the
high MΩ-region avoid a charging-up, yet isolate the elec-
trodes sufficiently to avoid shortcuts. The electrodes are
connected to the respective voltage supplies by contacts
through the substrate.

In contrast to conventional Penning traps the planar
trap represents an open geometry. This allows to access
the trapped particles with any kind of radiation or beam
and avoids to a large extent the occurrence of “cavity
effects” which may affect the damping of the oscillation
modes [22]. This is of particular importance for the cy-
clotron mode in the case of stored electrons. Moreover,
the position of the trapped particles as well as the depth
of the potential can be varied to a certain extent by appro-
priate choice of the applied voltages, as will be discussed
below.

2.1 Shape of the trapping potential

The electrostatic potential for a fixed set of parameters
exhibits a minimum at a well-defined distance above the
trap’s plane. This minimum serves for axial confinement of
a charged particle, while radial confinement is assured by
the magnetic field along the z-direction, as in conventional
Penning traps.

The electrostatic potential can be generally expressed
by the linear combination
∫ ∞

0

dk
(
A(k) e−kz + B(k) ekz

)
(J0(kρ) + C(k)N0(kρ))

with Jν and Nν being the standard Bessel functions of
first and second kind, respectively [23]. In our case ν = 0
because of cylindrical symmetry. Thus, a particle trapped
in the region z > 0 feels a potential of the form

φ(z, ρ) =
∫ ∞

0

dk A(k) e−kzJ0(kρ), (2)

Fig. 2. Geometry parameters of the planar trap.

where the terms with B(k), C(k) have been dropped be-
cause they diverge for z → ∞ and ρ → ∞, respectively. In
order to obtain the coefficients A(k) we impose the values
of the potential in the plane z = 0

V (ρ) ≡ φ(0, ρ) =
∫ ∞

0

dk A(k)J0(kρ) (3)

which, by use of the Hankel transform [23], allows for
writing

A(k) = k

∫ ∞

0

dρ ρ V (ρ)J0(kρ). (4)

As V (ρ) is piecewise constant, the coefficients A(k) are a
sum of the contributions from each electrode:

A(k) =
∑

i

Ai(k) (5)

with

Ai(k) = Vi [RiJ1(kRi) − (Ri − di)J1 (k(Ri − di))] (6)

where Ri denotes the distance at which electrode i ends
and di its thickness. Thus, the central electrode ends
at R1, the inner ring electrode at R2 and so forth (see
Fig. 2).

Note, that for the step from equations (3) to (4) it
is a necessary condition to have a well-defined voltage at
every position on the surface z = 0, i.e. a real trap will de-
viate from this description due to gaps between electrodes
and due to the finite size. Hence, a numerical comparison
between the idealized potential given by the coefficients
in equation (6) and a realistic one was performed. In the
region of the potential minimum, i.e. in the region that de-
termines the trapping behavior, the deviations were found
to be negligible on the scale of precision as needed in the
present investigations.

Based on the coefficients A(k) one can integrate the
potential in the whole space by using expression (2). As we
are interested in confinement along the z-axis the desired
solution is obtained by

φ(z, 0) ≡ φ(z) =
∫ ∞

0

dk A(k) e−kz , (7)
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Fig. 3. Axial potential as a function of the axial position mea-
sured in units of the inner electrode radius for three distinct
cases of applied voltages. For details, see text.

which is an analytic expression and represents a sum of
contributions from each electrode of the type

φi(z) = Vi



 1
√

1 + (Ri−di)2

z2

− 1
√

1 + R2
i

z2



 . (8)

The potential in equation (8) describes a trap with as
many adjacent electrodes as desired (one disk and many
rings), but in this paper we will consider only the possi-
bility of having either 2 or 3 electrodes plus an external
ring electrode which is grounded and ensures that our ap-
proximation is sufficiently correct. The condition that the
electrodes are adjacent can be written as

Ri+1 = Ri + di+1.

In Figure 3, the resulting axial potentials for three sim-
ple choices of the electrode voltages are shown. The solid
line represents the shape of the axial potential for the
most simple case of two electrodes (central electrode and
one ring electrode as shown in Fig. 2, V1 = 0.2 V, V2 =
−2 V). The dotted line shows a case with an additional
ring electrode outside the above configuration when the
two ring electrodes have voltages of the same sign (V1 =
0 V, V2 = −1 V, V3 = −2 V). Qualitatively, this config-
uration leads to the same potential shape as in the case
with two electrodes, as one might expect. The dashed line
gives the axial potential for the the same geometry, but
with the two ring electrode voltages having opposite signs
(V1 = 0.1 V, V2 = −2 V, V3 = 3 V). In this case, both a
maximum and a minimum occur. The shape of the mini-
mum is changed as compared to the other configurations,
affecting also the harmonicity, as will be discussed in the
following section.

2.2 Harmonicity of the trapping potential

The established methods of detection and manipulation
of trapped particles as relevant in the present case rely

on well-defined motional frequencies. Presently, the axial
frequency is of special interest. It is thus important to pro-
duce an axial trapping potential as harmonic as possible.

Let the anharmonicity be defined by the relative axial
frequency difference between the particle at a finite mo-
tional energy and the ground energy E0 = 1

2�ωz,

κ(E) :=
ωz(E) − ωz(E0)

ωz(E0)
. (9)

Then the anharmonicity is given by

κ(E) =
∞∑

i=1

[A(E)]i
∣
∣∣
∣
Ci+2

2C2

∣
∣∣
∣ (10)

with

A(E) =

√
E

mω2
z

(11)

being the motional amplitude of the particle along the
z-direction and Ci being the coefficients of the electro-
static potential as expanded by

φ(z) =
∞∑

i=0

Ci(z − z0)i. (12)

A shift in axial frequency due to the anharmonicity of the
trapping potential may obstruct a measurement of the cor-
responding signal. Detection of the particles’ axial motion
can be performed by pickup of the induced image current
in the central trap electrode via a tuned resonance circuit
of quality factor Q [29]. The width ∆ωz of the signal af-
ter transformation to the frequency domain is given by
the inverse time cooling constant due to the resistivity R
of the detection electronics. The cooling time constant is
given by

τ =
mD2

q2R
(13)

where m is the particle mass, D is the effective distance
of the particle to the electrode surface, q is the particle’s
charge. The resistance R is given by

R =
Q

ωzC
, (14)

where C is the parasitic capacitance of the detection elec-
tronics. For an electron trapped in a mm-scale planar trap
at an axial frequency of 100 MHz with detection electron-
ics of Q = 300 and C = 7.5 pF the width ∆ωz of the axial
signal is around 1 kHz. The anharmonicity κ(E) of the
trapping potential needs to fulfill the relation

κ(E)ωz(E) � ∆ωz . (15)

Thus, at an axial frequency of 100 MHz, anharmonicities κ
in the 10−5 region are necessary to allow for a reliable
measurement of the axial signal.
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Fig. 4. Potential minimum in the range of an electron oscillat-
ing at T = 100 mK with ωz ≈ 100 MHz. The electrode voltages
have been chosen to V1 = 0 V, V2 = −1 V and V3 = 2.6108 V.

An example of the shape of the trapping potential for a
given choice of electrode voltages and geometries is given
in Figure 4. It represents the potential minimum in the
range of an electron oscillating at T = 100 mK with ωz ≈
100 MHz. The electrode voltages have been chosen to V1 =
0 V, V2 = −1 V and V3 = 2.6108 V. A comparison of
the calculated potential shape with a harmonic potential
yields an anharmonicity κ of roughly 4 × 10−6, which is
sufficient for a reliable measurement of the axial signal.

2.3 Position of the minimum

For a given geometry the position of the potential min-
imum (z0) can be chosen by the applied voltages. Even
though an analytic solution for the potential function is
known, the determination of its minimum implies solving
a transcendental equation. It is thus necessary to extract
this information numerically.

Figure 5 shows the case with two electrodes, in which
the minimum distance z0 is roughly given by the radius
of the central electrode R1. With three electrodes it is
possible to shift the position of the minimum in a wider
range. When the two ring voltages are of opposite sign,
it is possible to change both the position of the minimum
(by changing V3 as compared to V2) and also its depth (by
changing the absolute values of both V2 and V3). This sit-
uation is displayed in Figure 6 for three choices of voltages
leading to three different positions of the minimum z1, z2

and z3. However, when the minimum is shifted towards
z = 0, it narrows, causing the frequency of the axial mo-
tion to increase. One is therefore restricted to a range
of distances which still allows for the particle to be de-
tected by the corresponding tuned resonance circuit. This
range is given by the width of the resonance circuit and
the signal-to-noise ratio tolerable in the detection elec-
tronics. Nevertheless, since voltages can be controlled and
stabilised on the millivolt level or below, the axial posi-
tion of the stored particles can within the given range be

Fig. 5. Position of the potential minimum in units of the inner
electrode radius as a function of the applied voltage ratio in
the case with 2 electrodes.

Fig. 6. Electrostatic potential as a function of z for three
different choices of the applied voltages.

controlled with a high sensitivity. This will prove to be a
great advantage when control over trap-trap interaction is
desired, since the strength of the coupling depends on the
position of the potential minimum. This will be discussed
in further detail in Section 3.

2.4 Depth of the minimum

The depth of the potential minimum determines the max-
imum energy of the particles that allows for trapping. In
the case with two electrodes it shows a linear dependence
on the ring voltage and is of similar size. When three elec-
trodes are being used, the overall linearity generally dis-
appears and is replaced by regions of linearity intercon-
nected by regions with different shape, depending on the
exact positions and magnitudes of the superimposed po-
tential contributions from different electrodes. Thus, the
precise potential depth has to be evaluated in detail for
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Fig. 7. Depth of the potential minimum as a function of the
inner ring voltage V2 for three cases of the outer ring voltage V3

when the central electrode voltage is V1 = 0 V.

the given set of parameters. Figure 7 shows the depth of
the potential minimum as a function of the inner ring volt-
age V2 for three cases of the outer ring voltage V3 when
the central electrode voltage is V1 = 0 V. The behavior is
nearly linear in each case, however the magnitude of the
depth depends on the choice of V3.

3 Trap-trap interaction

By connecting a pair of planar traps as sketched in
Figure 8 one obtains a system of individually trapped,
interacting particles. Each oscillating particle induces a
charge in the central electrode of its trap which interacts
via a connecting line with the other particle. This type
of interaction has been studied before in [24,25], however,
for the present purpose, a different approach is discussed.
We assume that the induced charges are located on both
surfaces of each central electrode and that the electrode
thickness is negligible. Let the upper surfaces of the central
electrodes have a common radius R and carry charges Q1

and Q2, respectively, while the remaining system, i.e. the
two lower surfaces and the connecting wire, carries a com-
mon charge Q3 = −(Q1 + Q2). The classical Hamiltonian
of this system is

H = H1 + H2 + q
Q1

2πε0R2

(√
R2 + z2

1 − z1

)

+q
Q2

2πε0R2

(√
R2 + z2

2 − z2

)

+
Q2

1

2C1
+

Q2
2

2C2
+

Q2
3

2C3
, (16)

where q is the charge of a trapped particle, Hi are the
particle Hamiltonians (which are effectively harmonic os-
cillators), Ci are the capacitances of the surfaces, and zi

is the axial positions of the particles.
If the induced charges are driven adiabatically by the

oscillating particles (i.e. they are in every moment in equi-

Fig. 8. Both traps are connected with a connection line, which
enables the induced charges to exchange energy between dif-
ferent trapped particles. The interaction can be turned on and
off by a switch.

librium with the oscillating particle) we can write:

d(H − H1 − H2)
dQi

= 0 ∀i. (17)

By applying this relation we obtain Q1 and Q2 as func-
tions of the zi, which inserted in the Hamiltonian (16)
yields:

H = H1 + H2 + Hint (18)

with Hint being a function of both zi. The system can be
quantised via the spatial variables of the axial oscillators,
that is zi = z0 + z̃i where z0 is the minimum of the axial
electrostatic potential. The z̃i can be expressed with lad-
der operators describing the levels of the axial harmonic
oscillator:

z̃ ≡ ẑ =

√
�

2mω

(
â + â†) . (19)

The Hamiltonian for the system in the interaction picture
to first order in ẑi and in terms of the ladder operators â

(†)
i

for each particle is:

Ĥ = �ω1

(
â†
1â1 +

1
2

)
+ �ω2

(
â†
2â2 +

1
2

)

+ �ωint

(
â†
1â2 + â1â

†
2

)
, (20)

where the rotating wave approximation has been used
and constant terms were removed. The quantised effec-
tive Hamiltonian describes the interchange of one photon
at a rate ωint. By use of the relations C1 = C2 = πRε0
and C3 = 2C1 + Cwire ∼ 2C1, we obtain the expression
for the interaction frequency:

ωint =
q2

16πR3ε0

1
2mωz

(

1 − z0√
R2 + z2

0

)2

. (21)

The interaction frequency is very sensitive to the length
scales of the trap; to give an example, an electron confined
in this configuration would have an interaction frequency

ωint ≈ 102 1
ωzR3

(

1 − z0√
R2 + z2

0

)2

(22)
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Fig. 9. Example of a 2D-array of planar traps connected
by a switching matrix with an information exchange rail. A
color version of the figure is available in electronic form at
http://www.eurphysj.org.

with z0, R given in meters and the frequencies given in Hz.
If z0 ≈ R and R ≈ 1 mm then ωint is of the order
of 1010/ωz s−2, i.e. for an axial frequency of 1 MHz the ef-
fective interaction frequency is 10 kHz. If R ≈ 0.1 mm then
ωint ≈ 1013/ωz s−2, i.e. for an axial frequency of 1 MHz
the interaction frequency is 10 MHz. The quantity in
brackets in equation (22) gives the dependence on the dis-
tance z0 and can vary the strength of the interaction by
several orders of magnitude. For example, for z0/R = 1 the
quantity in brackets is about 0.1. Already for z0/R = 10
the same quantity is 2 × 10−5.

This means that even for a fixed trap geometry,
it is still possible to control the speed of interaction
within a certain range by moving the particles along the
z-direction. This can be achieved via control of the posi-
tion of the electric minimum, as described in Section 2.3.
Note, that particle interaction does not rely on a connec-
tion line as it is assumed in the above discussion. Alterna-
tively, one can also use the direct Coulomb interaction of
the trapped particles and choose the interaction strength
by geometric parameters and the detuning of the axial fre-
quencies. Having both methods available can help study-
ing which of them is more robust against decoherence.

4 Array of traps

One major advantage of the novel trap being planar is the
possibility to arrange several traps in a plane. This would
be the equivalent to the optical lattices used as multitraps
in other experiments. The advantage compared to a possi-
ble linear array of Penning traps along the z-axis is due to
the change from one spatial dimension (1D) to two (2D),
since at a given length scale of order L, the number of
traps in an array scales not with L, but with L2. This
opens up the possibility of implementing a large number
of traps in parallel (Fig. 9).

vacuum chamber

superconducting
resonator

cryogenic
preamplifier

microwave
wave guide

electron
loading
trap

electron
gun
(F.E.P.)

multi planar trap array

Fig. 10. Schematic representation of a possible setup with an
array of planar traps used for trap-trap interaction studies on
stored electrons. The interaction strength can be controlled by
choice of the trap voltages and turned on and off by a switching
matrix. A color version of the figure is available in electronic
form at http://www.eurphysj.org.

5 Possible applications

Figure 10 shows a schematic representation of an exper-
imental setup for an array of planar traps used for elec-
tron confinement. The set-up consists of a field emission
point (FEP) as a source of electrons. A conventional hy-
perbolic Penning trap with a mesh as lower endcap is used
for storage and preparation of the electrons to be trapped
in the planar trap array. It is used to create a “shower” of
a large number of electrons (≈109) onto the planar array
by appropriate pulsing of the ring electrode voltage. Even
with a capture efficiency of less than 10−4 it will thus be
possible to trap some 103 electrons per trap. This num-
ber may then be lowered to one by use of well-established
mechanisms (see e.g. [26]). Coupling of a number of single
electrons may be performed by use of a switching matrix.
A microwave source can be used in order to induce spin
flips of the electron spin. When the device is used in a
cryogenic surrounding, synchrotron radiation in the cy-
clotron motion of the electrons in the external magnetic
field of several Tesla strength provides fast cooling of the
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cyclotron motion [27]. By coupling of the cyclotron de-
gree of freedom to the axial motion, also the axial degree
of freedom can be cooled efficiently [28].

Detection of the electron’s motion in a trap is achieved
by detection of the image charge induced in the trap
electrodes and the corresponding image current through
the attached electronics [29]. A Fourier transform of
the detected signal then yields the motional frequencies.
The detection can be performed separately for the dif-
ferent motional degrees of freedom of the electron in
analogy to similar measurements performed on single
stored ions [26,28,30].

5.1 Single-particle measurements in parallel

It is commonly known that numerous experiments con-
cerned with spectroscopy, atomic state lifetime measure-
ments, mass- and g-factor precision measurements, fre-
quency standards and many more gain substancially from
employing trapping techniques. However, typically only
one measurement is performed at a time since only one
trap and/or one particle is employed. Planar traps may
add some features to these kinds of investigations, since
a 2D array of planar traps can be used for a simultaneous
measurement of the same particle property in a large num-
ber of identical particles that are trapped and addressed
individually. Measurement statistics is thus increased pro-
portionally to the number of traps in use, limited virtually
only by miniaturisation and electronics. Problems may
arise from inhomogeneities of the magnetic field leading
to slightly different values of the field strength in different
traps. Field inhomogeneities of superconducting solenoids
are typically as small as µT/mm2 or below, but might
still influence high-precision measurements. However, a
number of measurements is not sensitive to the absolute
value of the field strength since only frequency ratios are
measured, see e.g. the g-factor precision measurements as
described in [26,28]. In these cases a shortening of the
necessary measurement time by a factor

√
n when n is

the number of parallel measurements would be most wel-
come since it could help to reduce measurement time from
months to weeks or to reduce the statistical uncertainty
accordingly.

5.2 Single-trap quantum logic and controlled particle
interaction

It has recently been achieved to implement quan-
tum informational gates and algorithms with trapped
ions [19,20,31–33]. The control over trapped particles and
the natural long coherence time that a trap provides to
quantum superpositions makes this tool desirable for de-
velopments in the field. It has recently also been proposed
to use stored electrons for quantum information process-
ing [34,35]. When a planar trap array is used for storage
of single electrons at sufficiently low temperature, it ap-
pears possible to perform quantum logic with each single
trapped electron as described in detail in [34,35], with

two qubits per trap comprising two internal (spin) states
and the external (quantized motion) states, preferably the
ground state and the first excited state of the axial and cy-
clotron motion. Under the present conditions, at ambience
temperatures below 100 mK as reached in 3He–4He di-
lution refrigerators, the electronic synchrotron radiation
brings the electron into the ground state of the cyclotron
motion [22]. The ground state of the axial motion may
then be reached by coupling of the two motions. Con-
trol over the the spin state is assured by the possibility
of inducing a spin flip by irradiation of appropriate mi-
crowaves. Detection of the spin state is performed by use
of the “Continuous Stern-Gerlach effect” which measures
the spin state by the corresponding axial frequency (for
details on this technique see, e.g. [26,28]). Note, that the
resonance circuit detecting the axial motion is switched
off during logic operation so that the spin coherence is
not affected; readout is applied only at the end.

The present Penning trap design yields furthermore
the possibility to employ an array of single-electron
traps with switchable interconnections between individual
traps. The control over the interaction strength (or speed)
of particles in different traps allows for studies of interac-
tion effects and controlled coupling of different motional
degrees of freedom of the particles. The interconnection of
a number of one-electron two-qubit systems might make
it possible to implement also quantum registers and error
correction strategies as described in [34,35].

6 Conclusions

We have proposed a design for a planar Penning trap
which can be scaled down to the sub-mm range. We have
shown that the design allows for particle trapping and
control over the position and the depth of the potential
minimum by choice of the applied voltages. An arbitrary
number of such traps may be arranged on a substrate
chip and connected by cryogenic switches. The fact that
an arbitrary number of traps can be arranged in 2D is
an advance in the scalability of trapping devices. It has
in addition the virtue of allowing for a number of parallel
measurements of the same quantity in the study of single-
particle properties, which increases the statistical signif-
icance of any observable. The possibility of a controlled
interaction between different traps by use of a switching
matrix provides a powerful tool for particle interaction
studies.

We acknowledge stimulating discussions with P. Tombesi and
coworkers. This work was funded by the BMBF and the EU in
the framework of the QUELE project (grant no. FP6-003772).
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